The Earfull October 7, 2025

The Earfull September 30, 2025

The Earfull September 23, 2025

The Earfull September 16, 2025

The Earfull June 24, 2025

Renk Seeds of Innovation Season 1 Episode 2

Lodged Corn Impact on Yield

Planting Date Effects on Corn Grain and Forage Yield

Corn planters will soon be rolling throughout Wisconsin and the Midwest Corn Belt. The annual struggle between field conditions being “just right” and not too wet versus delaying planting to another day will start to weigh on farmer’s minds. In addition, planting delays in the northern tier of U.S. states have greater impact on yield due to a shorter growing season and the added dimension (“double-whammy”) of drying costs at harvest that can occur during cool, wet growing seasons.

Figure 1 shows the impact of planting date on relative grain yield at Arlington. If all corn could be planted on one date, ideally it would be on May 1 or slightly earlier to decrease drying costs. Planting delays to June 1 will lower yields about 30%. However, in some growing seasons, 100% of the maximum grain yield can be achieved planting into late May. Grain yield decreases 0.5 bu/A per day on May 15 and accelerates to 2.5 bu/A per day on June 1.

Figure 1. The relationship between relative grain yield and planting date. Data includes all hybrids and trials conducted between 1991 and 2021 at Arlington, WI.
A similar story emerges for corn forage yield (Figure 2). A good rule of thumb is that, “What you do to maximize corn grain yield, you should also do to maximize corn forage yield.” The ideal planting date to maximum forage yield is May 1. By June 1, forage yield has decreased about 15%. However, many planting dates in June have achieved 100% of relative forage yield in the past. Forage yield decreases 0.2 T DM/A per day on May 15 and accelerates to 0.3 T DM/A per day on June 1.
Figure 2. The relationship between relative forage yield and planting date. Data includes all hybrids and trials conducted between 1991 and 2021 at Arlington, WI.
For both corn grain and forage yield, the variability (i.e. risk – spread of the data points around the average) of June planting dates increases. The success of June planting depends upon the growing season. For example, many farmers had success with June planting in 2021, while few had success in 2019. Now is the time to be ready to go, if field conditions allow.

Seeding Depth Affects Corn Plant Emergence Uniformity and Grain Yield

Planting depth effect on mesocotyl length.

Rarely do we see a paper published on corn seeding depth and the subsequent impact on grain yield. Precision technologies have allowed for capabilities of variable rate seeding, multi-hybrid planting on the go, and the ability to vary planting depth in real time in response to real-time soil moisture data. In a paper published by Nemergut et al. (2021), corn seed was planted at 1-, 2-, and 3-inch depths on two soil types in Ohio over three growing season (2017 to 2019). Shallow planting resulted in less uniform more extended emergence periods than 2- and 3-inch planting depths. If a plant emerged within 3 days of the first emerged neighboring plants, then there was no effect on plant grain yield. Any plant that emerged more than 3 days after the first emerged plant had a 5% decrease in kernel weight per day. Grain yield per plant increased as planting depth increased. Grain yield per acre was significantly increased by planting depth with seed planted at 2- and 3-inches yielding 8 or 10% more than the 1-inch seeding depth on one of the two soils. Other researchers have also shown improving emergence uniformity can positively increase yield, and that optimum planting depth may vary by field.

Further Reading

Nemergut KT, Thomison PR, Carter PR, Lindsey AJ. Planting depth affects corn emergence, growth and development, and yield. Agronomy Journal. 2021;113:3351–3360.  https://doi.org/10.1002/agj2.2070

The Impact of Corn Seed Size and Yield Potential